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Background

" The increasing renewables generation
* Intermittent and undispatchable

* Exacerbates the frequency responses by replacing synchronous
generators, reducing the system inertia, and increasing the fluctuation
of power generation

" Energy storage system (ESS) is a promising solution to address
such issues but still expensive
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Objective

* To develop a framework for sizing, siting, and operation of

energy storage systems (ESSs) to ensure efficiency, security,
and reliability of the power grids

* Considering correlated uncertainties and stability constraints in
the planning and operational horizons
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Technical Approach

" Formulated as a mixed-integer programming (MIP)-based Unit
Commitment (UC) problem accounting for the long-term
uncertainties of demand and renewable generation subject to

constraints
* Unit-Level: Generation capacity, start-up, ramp up/down, minimum uptime, ...
* ESS: SOC tracking, charge/discharge

* System-level: Demand variation, generator outages, frequency nadir (FN), rate of change of
frequency (RoCoF), quasi-steady-state (QSS), and soft constraints (transmission capacity,
reserve)

" Develop a scalable approach to solving the stochastic UC problem for ESS sizing,
siting, and operation
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Technical Approach (cont’d) *

* Random field theory (RFT)-based modeling of long-term renewable uncertainties

=  Consideration of (N-1) generator contingencies

* A new set of frequency dynamics constraints

=  Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) for stochastic MIP problems

* A rolling horizon-based SAVLR (SAVLRseq) to address the complexity and requirement of
computational resource

* A machine learning (ML)-assisted stochastics optimization scheme

*: Summarized from the following publications

[1] T. Zhao, N. Raghunathan, A.Yogarathnam, M Yue, and P. B. Luh,“A Scalable Planning Framework of Energy Storage Systems under Frequency Dynamics
Constraints,” the International Journal of Electrical Power and Energy Systems,Vol. 145, February 2023.

[2] B. Huang, T. Zhao, M.Yue, and J.Wang, “Two-Stage Adaptive Storage Expansion Strategy for Microgrids Using Deep Reinforcement Learning,”
accepted by IEEE Transactions on Smart Grid, to appear.

[3] N. Raghunathan, Z.Wang, P. B. Luh, M. A. Bragin, B.Yan, T. Zhao, M.Yue, “PCA-based Reduced-order Decomposition and Coordination Approach for
Markov-based Stochastic UC with Distributed Wind and Storage,” manuscript being prepared.
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ESS Planning Problem Formulation

* Mathematical formulation of ESS sizing and siting
* Objective function: Capital costs + Operation costs

min Y;ecq ¢ BE; + c¢ ¥, Do Zt(ZieQG(Ciqgft) +¢VSUR + ¢ ufy) +

l —_—
Yicag Ci Ait’ + Xieqy, G Tit .t Zijeq, ¢ (Sij + Si))

* Subject to:
» System coupling constraints: system demand, soft transmission capacity, FN,
RoCoF and QSS, ESS related
» Unit-level constraints: ramping, min up/down, generation capacity, and start-
up, ESS related
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ESS Planning Problem Formulation (cont’d)

" Transmission capacity soft constraints:

2.0ij {ZyEig;)t —b;” + bff;‘“ + 70 -1 + diP — dE} = fijeo Vij  DC power flow

fij < fije + Sij» Vij
fi% s < fijr vij } Transmission capacity
" Generator-related constraints:
uirgi < 9ir < Uit Ji Vi € Qg Generation lower and upper limits considering
= on/off status
;=t—ff SU‘%)’ S, ViE€Qg } Minimum up and down time of conventional
§1=t—‘ci_ SDE <uf, Vi€ generators
Uiy — Ujte—y = SUp —SDiE, Vi€ Qg Startup or shutdown logic

g?f?_gs)t—l SRUU t=2,3,"',nt,ViEQG
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ESS Planning Problem Formulation (cont’d)

= ESS-related constraints
Change of ESS state of charge (SoC)

ESS power | 0 < b® < a;;BPf", Vi€ Qg SOCH = SOCH_, +nftb At — b At /nf, Vi € Qp
limits do dch _ o ,
0 < b < By BPHM,  vie Qg SoC lirmits { 0.3 * BE; < SOC® < BE;, Vi€ Qg
SOCE, =S0CY = 0.5BE;, Vi € Q

Charging and discharging do not occur simultaneously
= Reserve constraints: Generation (generators + renewables + ESS) — load 2 reserve
YicasWitgi) + ZieQE(bict'w + BP" — bdw) + Yiea, (it — Tit ) + Xieay(dit” — dit) = R

ZLE.QG(ultgl) + ZLEQE(bLth + SOC i /At — b ) + Zleﬂw(rlt — riiw) + ZiEQB(dftw — d{g) = Ry’
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ESS Planning Problem Formulation (cont’d)

Quasi-Steady-State Frequency:

SO _ 5. w83,
qu(l.;? lE{.Q.G,.Qw}\.QK DRifO ’

AfE < Afe

» Rate of Change of Frequency (RoCoF):

H*2RoCoF™®* > Ag{y,
H"*2RoCoF™®* > Ag{y,

with HP*® =< Z ut g;H; + z (r7® — ri®)H; )/fo System inertia (MWs/Hz)
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ESS Planning Problem Formulation (cont’d)

" Frequency nadir limit:

R :
Zie{QG,QW}\QK git" = Ag?,)ﬁc ) Total reserve 2 system power imbalance
Rwk Ui vi WK :
0=gi = o Ageu, Vi, Vi € {Qg, Qu\Q,,
Lieg o YitVi
2HPE(f, — — £ WS ( a)lc)z System inertia X (freq0-fregmin) % system
t (fo = fuin = fab) Lietag. oo, Uit Vi 2 (Gtu S , A
ramp rate = system power imbalance”2
0<gi+ g <uflgi Vi€ Qg\Q, Total generation and reserve < total capacity

* Other frequency-related constraints

power from ESS bz%w (Atjg + Atppr) < SOCH

belP* < ¥icq, (b” + BPEM — b Increased/decreased
after contingencies Used ESS energy < remaining capacity

ch c,w d,w
be2P" < Yieq (BPE" — b + b
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Uncertainty Modeling for Planning Scenario
Development

= A sequential Monte Carlo simulation method is used to generate (N-1) scenarios
based on generator failure rates and repair rates
* An RFT framework suitable for simulating RF representation of climate variables

* Non-Gaussian, intermittent, dependent, periodic, and of a desired marginal probability distribution
and a spatio-temporal correlation structure.

Target is to generate correlated RVs Auxiliary correlated RVs (Z1, Z2)
(X1, X2) * both have the standard Gaussian
« with predefined target marginal marginal distribution

distributions o * the joint distribution is the bivariate

Fx, (v1) == P(X1 £x1) Fy,(x2) :=P(Xa < xp)| X1=F(®(7)), X2 = F}(®(Z2)) Gaussian with zero mean, unit

e Target correlation -- Pearson’s < variance

correlation coefficient d(-) standard Gaussian « correlation coefficient:

cumulative
px,x, = Corr[Xy, Xo] ?cijsgiFl;ution funetion pz,z, = Corr|Zy, Z,]
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- Surrogate Absolute Value Lagrangian Relaxation

(SAVLR) and SeqSAVLR

= SAVLR is a vast improvement

over traditional Lagrangian
Relaxation (LR)

* Exploit separability to reduce
complexity

* Faster and guaranteed
convergence

= Constraints tightening
= SeqSAVLR

* Divide a long-time horizon
into multiple shorter time
slots and solve the sub-
problems sequentially on a
rolling basis.
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Time slot 1:

SAVLR solves a
sub-problem using
load and wind data
in the time interval

Y

Export results as the
initial system
conditions for the
next slot

Time slot i:
Step 0

Initialize

multipliers.

> SP solutions.
step size

Go Lo
next SP

y Step 1+2
Update multipliers.
stepsize, penalty

coetticient. and S.0.C
requirement

Solve SP using B&C
until 8.0.C is satisfied

S ) N

Yes

criteria

Search for a FS

satisfied?

1 using B&C

FS: Feasible solution

S.0.C: surrogate
optumality
condition

SP: subproblem

Results saving

Time slot T':

SAVLR solves a
sub-problem using
load and wind data
in the time interval

Y

Export the results
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Presenter
Presentation Notes
The idea of the B&C method is to obtain the convex hull containing the feasible solutions, while the optimal solutions are located at its vertices. Then the problem is reduced to solving a linear programming (LP). 

Constraints tightening: A data preprocessing stage is added to convert constraints to delineate convex hull. So a linear programming can be applied to find the optimal solutions without combinatorial difficulties.

A traditional Lagrangian relaxation (LR) method [21]–[37] exploits separability into subproblems, each with much reduced complexity. However, standard LR requires solving all subproblems to update multipliers. It is difficult to optimize and convergence of multipliers is an issue.

These issues can be resolved by using surrogate LR. SLR can achieve “surrogate subgradient directions” by requiring the satisfaction of only the simple “surrogate optimality condition,” which is achieved by solving only one of the subproblems.

SLR may cause difficult searching for feasible solutions, which is overcome by introducing absolute value penalty, i.e., SAVLR. 


Case Study

SAVLR to solve a 24-hour planning of | | 8-

bus system
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Comparison of different solutions for the one-year
planning problem in | I8-bus system

bound cost finding time

Branch-and-cut 2.286 x 108 15m40s
SAVLR \ 2.3579 x 108 \ 50m30s
seqSAVLR \ 2.3617 x 108 \ 37m28s

SeqSAVLR to solve a one-year planning of | I8-bus system
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Case Study (cont’d)

Comparison of different solutions for the one-year planning in 2,383-
bus Polish System

Method Lower Feasible cost | Lower bound| Solution time
bound finding time

\
SAVLR \ \ \ \
\

seqSAVLR \ 1.7896 50h43m02s
x 1010

* Computation remains a challenge when considering all constraints,
especially dynamics constraints
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Two-stage Learning-assisted Stochastic
Optimization

" We propose an approach by combining deep reinforcement
learning (DRL) and MIP together with a novel sequential
expansion model

* Provides dynamic planning policies to adapt to volatile future
battery prices and long-term renewables/load growth

= At the upper level,a DRL agent is used to determine the installation
locations and capacity sequentially.

= At the lower level, a tractable linear programming (LP) problem is
formulated and solved to fulfill the optimal operation
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Two-stage Learning-assisted Stochastic
Optimization (cont’d)

Upper Level: Dynamic planning policy for long-term uncertainties

o States/Parameters: UL Actions/Decision variables
u D R L cena b I c d by d eCou P I | ng p P Forecast information; :> o S(Integer variables): folowerlevel o
LLpiresis seihisty Elistas s o2 (Capacity and location of batteries I
R . I Exsiting Configuration I
f d d I Reward/Objective:
O I S C rete a n C O ntl n u O u S 1 Minimize discounted investment + p_pggi_t_l_qp_ _qp_s:t_ JSrom lower level 1
° Two time-scale coordination
variables s syt y= ;
d=0 d=1 d:|D| d=0 d=1 d:|D|
. Solvefi H H
" Decoupled timescales at Goeeation| o o>

extreme and typical days from clustering techniques

upper and lower levels, e.g., &

! |
1 Upper Level Lower Level I
o I \ (every five-year) (daily) / I
every five years vs. 24 hours . TE— :
Lower Level: Microgrid operation =
| Min Operatlon cost | upper level 1
il 1 I Decision variables (Continuous variables): L i
» Adaptability to stochastic T S e
----------------------------- Frequency constraints;
storage charging/discharging, etc.
. e ~ Sommrstotuy
S C e n a r'l O S depgidatnan Branch flow constraints;
upper level .
Component of bi-level interaction = = =Y bi-level interaction information flow
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RL-based Solution to ESS Sizing and Siting

* The siting, sizing, and timing of ESS installation is multi-period decision-
making and can be modeled as a Markov decision process (MDP) specified
by a 5-tuple:

State space, action space, state transition, reward function, and reward discount
* ESS price changes are modeled in a discrete-time Markov chain (DTMC)

* Data argumentation technique is used to generate diversified load and RES profiles
* Rainbow distributional DRL algorithm is adopted

* After the offline training, ESS sites and capacities will be online inferred

129 115
0.6
e
06 @ The DTMC for battery storage price
4o %o

212 143
98
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C S o
ase Study :
g
3 -14
=
" A 33-bus radial microgrid with three dispatchable ¢ _ '
. = — PPO
DGs, one PV cluster, and one wind cluster 5 . DDON
o —
10 random price trajectories from MC 10 random RES trajectories from DA 10 random load trajectories from DA 8 _18 % R . b
£ £ S ainbow
z z = -2.0 —4&—  Rainbow-QR
> Eoz s 2000 4000 6000 8000 10000
= g g Episodes
&1 & DRL learning performance
‘ Periotf index ! Period index Period index
£ 1.00 €075 £
= = = 1.0
S 075 m £ 0.50 E : - —1.2-
E — epre. da; g % 0 8 h
2 050 — :x:)re. 1;121;120969 2025 = g _1 4_
=] ; = ) .
£025) can___ AN | 2 £0.6 b
= % 0.00 = =
0 10 20 0 10 20 0 10 20 <
Hour index Hour index Hour index v —1.61 4 loc
Upper: period-level price, RES, and load trajectories; Lower: examples of E 6 loc
hourly wind, solar, and load profiles with variation intervals =
S —1.8; — 8loc
) . 53 — 101loc
Computational efficiency of DRL and MILP 2.0
— — 2000 4000 6000 8000 10000
etho 1 6 8 10 episodes
DRL  4.16 £ 0.11 ms 437 £ 0.10 ms 5.03 & 0.28 ms 6.68 £ 0.18 ms Training curves of different numbers of

MILP solver 118.74+5.05s 2207+15¢s 438.3+25s 673.3+11.0s candidate nOdeS fOI" Ess insta"ation
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Case Study (cont’d)

COMPARISON OF EXPANSION DECISIONS, COSTS, AND COMPUTATION TIME FOR DRL AND MILP

Scenario I Scenario 11 Scenario III
(low net load) (intermediate net load) (high net load)
RES annual growth rate 5% 2% 1%
Load annual growth rate 3% 2% 2.5%
Method prr.  MILP BD* pr. MILP - pps pr. ~ MILP BD*
solver solver solver
Oth year - - - - - - - - -
Multi-period expansion decisions sth
Format: capacity (kWh) @ node, th year _ _ _ _ _ _ _ . _
1000@26 1000@30 1000@30

10th year 1000@26 1000@26 1000@26 1000@26 1000@26 1000@30

- indicates no installation
- 500@26 500@26 500@30

15th year - - -
20th year - - - - - - - - -
Total Cost (106%) 1.69 1.69 1.69 1.49 1.49 1.49 1.81 1.81 1.81
total: 776.772 total: 834.719 total: 1635.480
Time required for generating decisions (s)T 0.004  167.032 master: 14776 0.004  226.467 master:14.913 0.004 293.337 master: 48.831
sub: 761.996 sub: 819.806 sub: 1586.648

¥ BD: benders decomposition; ] Average over three independent runs.

National Laboratory
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Conclusion and Future Works

= State-of-the-art uncertainty modeling

* Spatiotemporal correlation of renewable generation
* (N-I) generator outage scenarios

* Development of a scalable mathematical programming-based optimization

framework
* SAVLR and seqSAVLR for long-term planning

* Development of a bi-level DRL-assisted optimization framework

* Demonstration of ESS siting and sizing performances considering various
constraints, especially frequency dynamics constraints

" Inclusion of dynamics constraints increases the complexity tremendously
and ML-based constraints learning is being investigated
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