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Background

The increasing renewables generation
• Intermittent and undispatchable
• Exacerbates the frequency responses by replacing synchronous 

generators, reducing the system inertia, and increasing the fluctuation 
of power generation

Energy storage system (ESS) is a promising solution to address 
such issues but still expensive
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Objective

 To develop a framework for sizing, siting, and operation of 
energy storage systems (ESSs) to ensure efficiency, security, 
and reliability of the power grids
• Considering correlated uncertainties and stability constraints in 

the planning and operational horizons



Technical Approach

 Formulated as a mixed-integer programming (MIP)-based Unit 
Commitment (UC) problem accounting for the long-term 
uncertainties of demand and renewable generation subject to 
constraints

• Unit-Level: Generation capacity, start-up, ramp up/down, minimum uptime, ... 
• ESS: SOC tracking, charge/discharge
• System-level: Demand variation, generator outages, frequency nadir (FN), rate of change of 

frequency (RoCoF), quasi-steady-state (QSS), and soft constraints (transmission capacity, 
reserve)

 Develop a scalable approach to solving the stochastic UC problem for ESS sizing, 
siting, and operation
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Technical Approach (cont’d) *

 Random field theory (RFT)-based modeling of long-term renewable uncertainties
 Consideration of (N-1) generator contingencies
 A new set of frequency dynamics constraints
 Surrogate Absolute-Value Lagrangian Relaxation (SAVLR) for stochastic MIP problems
 A rolling horizon-based SAVLR (SAVLRseq) to address the complexity and requirement of 

computational resource
 A machine learning (ML)-assisted stochastics optimization scheme

*: Summarized from the following publications
[1] T. Zhao, N. Raghunathan, A. Yogarathnam, M Yue, and P. B. Luh, “A Scalable Planning Framework of Energy Storage Systems under Frequency Dynamics 
Constraints,” the International Journal of Electrical Power and Energy Systems, Vol. 145, February 2023. 
[2] B. Huang, T. Zhao, M. Yue, and J. Wang, “Two-Stage Adaptive Storage Expansion Strategy for Microgrids Using Deep Reinforcement Learning,” 
accepted by IEEE Transactions on Smart Grid, to appear.
[3] N. Raghunathan, Z. Wang, P. B. Luh, M. A. Bragin, B. Yan, T. Zhao, M. Yue, “PCA-based Reduced-order Decomposition and Coordination Approach for 
Markov-based Stochastic UC with Distributed Wind and Storage,” manuscript being prepared.
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 Mathematical formulation of ESS sizing and siting
• Objective function: Capital costs + Operation costs 

ESS Planning Problem Formulation

• Subject to:

 System coupling constraints: system demand, soft transmission capacity, FN,
RoCoF, and QSS, ESS related

Unit-level constraints: ramping, min up/down, generation capacity, and start-
up, ESS related

min∑𝑖𝑖∈Ω𝐸𝐸 𝑐𝑐𝑖𝑖
𝐸𝐸𝐵𝐵𝐸𝐸𝑖𝑖 + 𝑐𝑐𝑐𝑐 ∑𝜔𝜔 𝑝𝑝𝜔𝜔 ∑𝑡𝑡�

�

∑𝑖𝑖∈Ω𝐺𝐺 𝑐𝑐𝑖𝑖
𝑔𝑔𝑔𝑔𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑐𝑐𝑖𝑖𝑁𝑁𝑁𝑁𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔 +

∑𝑖𝑖∈Ω𝐵𝐵 𝑐𝑐𝑖𝑖
𝑙𝑙𝑙𝑙𝑑𝑑𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 + ∑𝑖𝑖∈Ω𝑊𝑊 𝑐𝑐𝑖𝑖

𝑟𝑟𝑙𝑙𝑟𝑟𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 + ∑𝑖𝑖𝑖𝑖∈Ωl 𝑐𝑐
𝑙𝑙(𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖)



ESS Planning Problem Formulation (cont’d)

 Transmission capacity soft constraints:
∑𝛼𝛼𝑖𝑖𝑖𝑖 ∑𝑦𝑦∈𝑖𝑖 𝑔𝑔𝑦𝑦𝑡𝑡𝜔𝜔 − 𝑏𝑏𝑖𝑖𝑡𝑡

𝑐𝑐,𝜔𝜔 + 𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔 + 𝑟𝑟𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑟𝑟𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 + 𝑑𝑑𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 − 𝑑𝑑𝑖𝑖𝑡𝑡𝜔𝜔 = 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝜔𝜔 , ∀𝑖𝑖𝑖𝑖

𝑓𝑓𝑖𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑠𝑠𝑖𝑖𝑖𝑖 , ∀𝑖𝑖𝑖𝑖

𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑠𝑠𝑖𝑖𝑖𝑖 ≤ ̅𝑓𝑓𝑖𝑖𝑖𝑖 , ∀𝑖𝑖𝑖𝑖

𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔𝑔𝑔𝑖𝑖 ≤ 𝑔𝑔𝑖𝑖𝑡𝑡𝜔𝜔 ≤ 𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔�̅�𝑔𝑖𝑖 , ∀𝑖𝑖 ∈ Ω𝐺𝐺

∑𝑦𝑦=𝑡𝑡−𝜏𝜏𝑖𝑖+
𝑡𝑡 𝑆𝑆𝑈𝑈𝑖𝑖𝑦𝑦𝜔𝜔 ≤ 𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔, ∀𝑖𝑖 ∈ Ω𝐺𝐺

∑𝑦𝑦=𝑡𝑡−𝜏𝜏𝑖𝑖−
𝑡𝑡 𝑆𝑆𝐷𝐷𝑖𝑖𝑦𝑦𝜔𝜔 ≤ 𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔, ∀𝑖𝑖 ∈ Ω𝐺𝐺

𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑢𝑢𝑖𝑖 𝑡𝑡−1
𝜔𝜔 = 𝑆𝑆𝑈𝑈𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑆𝑆𝐷𝐷𝑖𝑖𝑡𝑡𝜔𝜔, ∀𝑖𝑖 ∈ Ω𝐺𝐺

𝑔𝑔𝑖𝑖𝑡𝑡𝜔𝜔 − 𝑔𝑔𝑖𝑖,𝑡𝑡−1𝜔𝜔 ≤ 𝑅𝑅𝑈𝑈𝑖𝑖 , 𝑡𝑡 = 2,3,⋯ ,𝑛𝑛𝑡𝑡 ,∀𝑖𝑖 ∈ Ω𝐺𝐺

𝑔𝑔𝑖𝑖,𝑡𝑡−1𝜔𝜔 − 𝑔𝑔𝑖𝑖𝑡𝑡𝜔𝜔 ≤ 𝑅𝑅𝐷𝐷𝑖𝑖 , 𝑡𝑡 = 2,3,⋯ ,𝑛𝑛𝑡𝑡 ,∀𝑖𝑖 ∈ Ω𝐺𝐺

 Generator-related constraints:

DC power flow

Transmission capacity 

Generation lower and upper limits considering 
on/off status

Minimum up and down time of conventional 
generators

Startup or shutdown logic

Ramp rate up and down limits



 ESS-related constraints

ESS Planning Problem Formulation (cont’d)

0 ≤ 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 ≤ 𝛼𝛼𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐𝑐, ∀𝑖𝑖 ∈ Ω𝐸𝐸

0 ≤ 𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔 ≤ 𝛽𝛽𝑖𝑖𝑡𝑡𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐𝑐, ∀𝑖𝑖 ∈ Ω𝐸𝐸

𝛼𝛼𝑖𝑖𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑡𝑡 ≤ 1, ∀𝑖𝑖 ∈ Ω𝐸𝐸

𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,𝑡𝑡𝜔𝜔 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,𝑡𝑡−1𝜔𝜔 + 𝜂𝜂𝑖𝑖𝑐𝑐𝑐𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔Δ𝑡𝑡 − 𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔Δ𝑡𝑡/𝜂𝜂𝑖𝑖𝑑𝑑𝑐𝑐𝑐,∀𝑖𝑖 ∈ Ω𝐸𝐸

0.3 ∗ 𝐵𝐵𝐸𝐸𝑖𝑖 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑡𝑡𝜔𝜔 ≤ 𝐵𝐵𝐸𝐸𝑖𝑖 , ∀𝑖𝑖 ∈ Ω𝐸𝐸
𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,𝑛𝑛𝑡𝑡

𝜔𝜔 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,0𝜔𝜔 = 0.5𝐵𝐵𝐸𝐸𝑖𝑖 , ∀𝑖𝑖 ∈ Ω𝐸𝐸

 Reserve constraints: Generation (generators + renewables + ESS) – load ≥ reserve

∑𝑖𝑖∈Ω𝐺𝐺 𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔�̅�𝑔𝑖𝑖 + ∑𝑖𝑖∈Ω𝐸𝐸 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 + 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐𝑐 − 𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔 + ∑𝑖𝑖∈Ω𝑊𝑊 𝑟𝑟𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑟𝑟𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 + ∑𝑖𝑖∈Ω𝐵𝐵 𝑑𝑑𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 − 𝑑𝑑𝑖𝑖𝑡𝑡𝜔𝜔 ≥ 𝑅𝑅𝑡𝑡𝜔𝜔

∑𝑖𝑖∈Ω𝐺𝐺 𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔�̅�𝑔𝑖𝑖 + ∑𝑖𝑖∈Ω𝐸𝐸 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 + 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,𝑡𝑡𝜔𝜔/Δ𝑡𝑡 − 𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔 + ∑𝑖𝑖∈Ω𝑊𝑊 𝑟𝑟𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑟𝑟𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 + ∑𝑖𝑖∈Ω𝐵𝐵 𝑑𝑑𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 − 𝑑𝑑𝑖𝑖𝑡𝑡𝜔𝜔 ≥ 𝑅𝑅𝑡𝑡𝜔𝜔

ESS power 
limits

Charging and discharging do not occur simultaneously

Change of ESS state of charge (SoC) 

SoC limits



 Quasi-Steady-State Frequency:

ESS Planning Problem Formulation (cont’d)

 Rate of Change of Frequency (RoCoF):

𝐻𝐻𝑡𝑡𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝐹𝐹max ≥ Δ𝑔𝑔𝑡𝑡,u
𝜔𝜔𝜔𝜔,

𝐻𝐻𝑡𝑡𝜔𝜔𝜔𝜔2𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝐹𝐹max ≥ Δ𝑔𝑔𝑡𝑡,o
𝜔𝜔𝜔𝜔,

𝐻𝐻𝑡𝑡𝜔𝜔𝜔𝜔 = ��
𝑖𝑖∈Ω𝐺𝐺\Ω𝜅𝜅

𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔�̅�𝑔𝑖𝑖𝐻𝐻𝑖𝑖 + �
𝑖𝑖∈Ω𝑊𝑊\Ω𝜅𝜅

𝑟𝑟𝑖𝑖𝑡𝑡𝑜𝑜𝜔𝜔 − 𝑟𝑟𝑖𝑖𝑡𝑡𝑙𝑙𝜔𝜔 𝐻𝐻𝑖𝑖 𝑓𝑓0with

Δ𝑔𝑔𝑡𝑡,u
𝜔𝜔𝜅𝜅

Δ𝑓𝑓𝑞𝑞𝑞𝑞𝑞𝑞𝜔𝜔𝜅𝜅
= ∑𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅

𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔 �𝑔𝑔𝑖𝑖

𝐷𝐷𝑅𝑅𝑖𝑖𝑓𝑓0
,

Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝜔𝜔𝜔𝜔 ≤ Δ𝑓𝑓𝑞𝑞𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

System inertia (MWs/Hz)



 Frequency nadir limit: 

ESS Planning Problem Formulation (cont’d)

∑𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 𝑔𝑔𝑖𝑖𝑡𝑡
𝑅𝑅𝜔𝜔𝜔𝜔 ≥ Δ𝑔𝑔𝑡𝑡,u

𝜔𝜔𝜔𝜔,

0 ≤ 𝑔𝑔𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜔𝜔 ≤
𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔𝑣𝑣𝑖𝑖

∑𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔𝑣𝑣𝑖𝑖

Δ𝑔𝑔𝑡𝑡,u
𝜔𝜔𝜔𝜔,∀𝜅𝜅,∀𝑖𝑖 ∈ {Ω𝐺𝐺 , Ω𝑊𝑊}\Ω𝜔𝜔,  

2𝐻𝐻𝑡𝑡𝜔𝜔𝜔𝜔 𝑓𝑓0 − 𝑓𝑓𝑀𝑀𝑀𝑀𝑁𝑁 − 𝑓𝑓𝑑𝑑𝑑𝑑 ∑𝑖𝑖∈{Ω𝐺𝐺,Ω𝑊𝑊}\Ω𝜅𝜅 𝑢𝑢𝑖𝑖𝑡𝑡
𝜔𝜔𝑣𝑣𝑖𝑖 ≥ 𝑔𝑔𝑡𝑡,u

𝜔𝜔𝜔𝜔 2

0 ≤ 𝑔𝑔𝑖𝑖𝑡𝑡𝜔𝜔 + 𝑔𝑔𝑖𝑖𝑡𝑡𝑅𝑅𝜔𝜔𝜔𝜔 ≤ 𝑢𝑢𝑖𝑖𝑡𝑡𝜔𝜔�̅�𝑔𝑖𝑖 , ∀𝑖𝑖 ∈ Ω𝐺𝐺\Ω𝜔𝜔

𝑏𝑏𝑐𝑐𝑐𝑡𝑡𝜔𝜔𝜔𝜔 ≤ ∑𝑖𝑖∈Ω𝐸𝐸 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 + 𝐵𝐵𝑃𝑃𝑖𝑖𝑑𝑑𝑐𝑐𝑐 − 𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔

𝑏𝑏𝑐𝑐2𝑡𝑡𝜔𝜔𝜔𝜔 ≤ ∑𝑖𝑖∈Ω𝐸𝐸 𝐵𝐵𝑃𝑃𝑖𝑖𝑐𝑐𝑐 − 𝑏𝑏𝑖𝑖𝑡𝑡
𝑐𝑐,𝜔𝜔 + 𝑏𝑏𝑖𝑖𝑡𝑡

𝑑𝑑,𝜔𝜔

𝑏𝑏𝑖𝑖𝑡𝑡
𝑑𝑑,𝜔𝜔 Δ𝑡𝑡𝑀𝑀𝑅𝑅 + Δ𝑡𝑡𝑃𝑃𝑃𝑃𝑅𝑅 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝑡𝑡𝜔𝜔

 Other frequency-related constraints

Total reserve ≥ system power imbalance

System inertia × (freq0-freqmin) × system 
ramp rate ≥ system power imbalance^2
Total generation and reserve ≤ total capacity

Increased/decreased 
power from ESS 
after contingencies Used ESS energy≤ remaining capacity
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Uncertainty Modeling for Planning Scenario 
Development
 A sequential Monte Carlo simulation method is used to generate (N-1) scenarios 

based on generator failure rates and repair rates
 An RFT framework suitable for simulating RF representation of climate variables

• Non-Gaussian, intermittent, dependent, periodic, and of a desired marginal probability distribution 
and a spatio-temporal correlation structure.

Target is to generate correlated RVs 
(X1, X2)
• with predefined target marginal 

distributions

• Target correlation -- Pearson’s 
correlation coefficient

Auxiliary correlated RVs (Z1, Z2)
• both have the standard Gaussian 

marginal distribution
• the joint distribution is the bivariate 

Gaussian with zero mean, unit 
variance

• correlation coefficient:standard Gaussian 
cumulative 
distribution function 
(CDF)



Surrogate Absolute Value Lagrangian Relaxation 
(SAVLR) and SeqSAVLR

 SAVLR is a vast improvement 
over traditional Lagrangian
Relaxation (LR)
• Exploit separability to reduce 

complexity 
• Faster and guaranteed 

convergence 

 Constraints tightening
 SeqSAVLR

• Divide a long-time horizon 
into multiple shorter time 
slots and solve the sub-
problems sequentially on a 
rolling basis.

12

Presenter
Presentation Notes
The idea of the B&C method is to obtain the convex hull containing the feasible solutions, while the optimal solutions are located at its vertices. Then the problem is reduced to solving a linear programming (LP). Constraints tightening: A data preprocessing stage is added to convert constraints to delineate convex hull. So a linear programming can be applied to find the optimal solutions without combinatorial difficulties.A traditional Lagrangian relaxation (LR) method [21]–[37] exploits separability into subproblems, each with much reduced complexity. However, standard LR requires solving all subproblems to update multipliers. It is difficult to optimize and convergence of multipliers is an issue.These issues can be resolved by using surrogate LR. SLR can achieve “surrogate subgradient directions” by requiring the satisfaction of only the simple “surrogate optimality condition,” which is achieved by solving only one of the subproblems.SLR may cause difficult searching for feasible solutions, which is overcome by introducing absolute value penalty, i.e., SAVLR. 
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Case Study

SAVLR to solve a 24-hour planning of 118-
bus system

Method Lower 
bound

Feasible 
cost

Lower bound 
finding time

Solution time

Branch-and-cut 2.286 × 108 \ 15m40s \
SAVLR \ 2.3579 × 108 \ 50m30s

seqSAVLR \ 2.3617 × 108 \ 37m28s

Comparison of different solutions for the one-year 
planning problem in 118-bus system

SeqSAVLR to solve a one-year planning of 118-bus system
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Case Study (cont’d)

Comparison of different solutions for the one-year planning in 2,383-
bus Polish System

Method Lower 
bound

Feasible cost Lower bound 
finding time

Solution time

Branch-and-cut \ \ \ \
SAVLR \ \ \ \

seqSAVLR \ 1.7896
× 1010

\ 50h43m02s

 Computation remains a challenge when considering all constraints, 
especially dynamics constraints
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Two-stage Learning-assisted Stochastic 
Optimization

 We propose an approach by combining deep reinforcement 
learning (DRL) and MIP together with a novel sequential 
expansion model
• Provides dynamic planning policies to adapt to volatile future 

battery prices and long-term renewables/load growth
 At the upper level, a DRL agent is used to determine the installation 

locations and capacity sequentially. 
 At the lower level, a tractable linear programming (LP) problem is 

formulated and solved to fulfill the optimal operation
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Two-stage Learning-assisted Stochastic 
Optimization (cont’d)

DRL enabled by decoupling 
of discrete and continuous 
variables
Decoupled timescales at 

upper and lower levels, e.g., 
every five years vs. 24 hours
Adaptability to stochastic 

scenarios



 The siting, sizing, and timing of ESS installation is multi-period decision-
making and can be modeled as a Markov decision process (MDP) specified
by a 5-tuple:
• State space, action space, state transition, reward function, and reward discount

• ESS price changes are modeled in a discrete-time Markov chain (DTMC)
• Data argumentation technique is used to generate diversified load and RES profiles
• Rainbow distributional DRL algorithm is adopted
• After the offline training, ESS sites and capacities will be online inferred

RL-based Solution to ESS Sizing and Siting

The DTMC for battery storage price



 A 33-bus radial microgrid with three dispatchable
DGs, one PV cluster, and one wind cluster

Case Study

Upper: period-level price, RES, and load trajectories; Lower: examples of 
hourly wind, solar, and load profiles with variation intervals

DRL learning performance

Training curves of different numbers of 
candidate nodes for ESS installation

Computational efficiency of DRL and MILP



Case Study (cont’d)

COMPARISON OF EXPANSION DECISIONS, COSTS, AND COMPUTATION TIME FOR DRL AND MILP



 State-of-the-art uncertainty modeling
• Spatiotemporal correlation of renewable generation
• (N-1) generator outage scenarios

 Development of a scalable mathematical programming-based optimization 
framework
• SAVLR and seqSAVLR for long-term planning

 Development of a bi-level DRL-assisted optimization framework 
 Demonstration of ESS siting and sizing performances considering various 

constraints, especially frequency dynamics constraints
 Inclusion of dynamics constraints increases the complexity tremendously 

and ML-based constraints learning is being investigated

Conclusion and Future Works
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